rtificial intelligence (AI) has the potential to help tackle some of the world’s most challenging social problems. To analyze potential applications for social good, we compiled a library of about 160 AI social-impact use cases. They suggest that existing capabilities could contribute to tackling cases across all 17 of the UN’s sustainable-development goals, potentially helping hundreds of millions of people in both advanced and emerging countries.

Real-life examples of AI are already being applied in about one-third of these use cases, albeit in relatively small tests. They range from diagnosing cancer to helping blind people navigate their surroundings, identifying victims of online sexual exploitation, and aiding disaster-relief efforts (such as the flooding that followed Hurricane Harvey in 2017). AI is only part of a much broader tool kit of measures that can be used to tackle societal issues, however. For now, issues such as data accessibility and shortages of AI talent constrain its application for social good.

This article is a condensed version of our discussion paper. It looks at domains of social good where AI could be applied, and the most pertinent types of AI capabilities, as well as the bottlenecks and risks that must be overcome and mitigated if AI is to scale up and realize its full potential for social impact. The article is divided into five sections:

  1. Mapping AI use cases to domains of social good
  2. AI capabilities that can be used for social good
  3. Overcoming bottlenecks, especially around data and talent

Mapping AI use cases to domains of social good

For the purposes of this research, we defined AI as deep learning. We grouped use cases into ten social-impact domains based on taxonomies in use among social-sector organizations, such as the AI for Good Foundation and the World Bank. Each use case highlights a type of meaningful problem that can be solved by one or more AI capability. The cost of human suffering, and the value of alleviating it, are impossible to gauge and compare. Nonetheless, employing usage frequency as a proxy, we measure the potential impact of different AI capabilities.

For about one-third of the use cases in our library, we identified an actual AI deployment (Exhibit 1). Since many of these solutions are small test cases to determine feasibility, their functionality and scope of deployment often suggest that additional potential could be captured. For three-quarters of our use cases, we have seen solutions deployed that use some level of advanced analytics; most of these use cases, although not all, would further benefit from the use of AI techniques. Our library is not exhaustive and continues to evolve, along with the capabilities of AI.

AI capabilities that can be used for social good

We identified 18 AI capabilities that could be used to benefit society. Fourteen of them fall into three major categories: computer vision, natural-language processing, and speech and audio processing. The remaining four, which we treated as stand-alone capabilities, include three AI capabilities: reinforcement learning, content generation, and structured deep learning. We also included a category for analytics techniques.

Overcoming bottlenecks, especially for data and talent

While the social impact of AI is potentially very large, certain bottlenecks must be overcome if even some of that potential is to be realized. In all, we identified 18 potential bottlenecks through interviews with social-domain experts and with AI researchers and practitioners. We grouped these bottlenecks in four categories of importance.